Giải bài 7 trang 75 SBT toán 10 - Cánh diều

2024-09-14 10:36:25

Đề bài

Cho tam giác ABC có \(AB = 5,AC = 7,BC = 9\). Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác ABC (làm tròn kết quả đến hàng phần mười)

Phương pháp giải - Xem chi tiết

Bước 1:  Sử dụng định lí cosin để tính góc A

Bước 2: Sử dụng định lí sin để tính bán kính R

Lời giải chi tiết

Áp dụng định lí cosin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

\( \Rightarrow \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{5^2} + {7^2} - {9^2}}}{{2.5.7}} =  - \frac{1}{{10}}\) \( \Rightarrow \widehat A \approx {96^0}\)

Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{BC}}{{\sin {\rm{A}}}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin {\rm{A}}}} = \frac{9}{{2.\sin {{96}^0}}} \approx 4,5\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"