Giải bài 18 trang 80 SBT toán 10 - Cánh diều

2024-09-14 10:36:29

Đề bài

Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Người đó tiến hành đo đạc và thu được kết quả: \(AB = 30m,\widehat {CAB} = {60^0},\widehat {CBA} = {50^0}\) (Hình 23). Tính khoảng cách từ vị trí A đến con tàu C(làm tròn kết quả đến hàng phần mười theo đơn vị mét)?

Phương pháp giải - Xem chi tiết

Bước 1: Tính số đo góc \(\widehat {ACB}\) 

Bước 2:  Sử dụng định lí sin để tính độ dài AC của ∆ABC rồi kết luận

Lời giải chi tiết

Ta có:  \(\widehat {ACB} = {180^0} - (\widehat {CBA} + \widehat {CAB}) = {70^0}\)

Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{AC}}{{\sin \widehat {CBA}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {ACB}}} = \frac{{30.\sin {{50}^0}}}{{\sin {{70}^0}}} \approx 24,5\)

Vậy khoảng cách từ vị trí A đến con tàu C  là 24,5 m

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"