Giải bài 18 trang 80 SBT toán 10 - Cánh diều

2024-09-14 10:36:29

Đề bài

Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Người đó tiến hành đo đạc và thu được kết quả: \(AB = 30m,\widehat {CAB} = {60^0},\widehat {CBA} = {50^0}\) (Hình 23). Tính khoảng cách từ vị trí A đến con tàu C(làm tròn kết quả đến hàng phần mười theo đơn vị mét)?

Phương pháp giải - Xem chi tiết

Bước 1: Tính số đo góc \(\widehat {ACB}\) 

Bước 2:  Sử dụng định lí sin để tính độ dài AC của ∆ABC rồi kết luận

Lời giải chi tiết

Ta có:  \(\widehat {ACB} = {180^0} - (\widehat {CBA} + \widehat {CAB}) = {70^0}\)

Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{AC}}{{\sin \widehat {CBA}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {ACB}}} = \frac{{30.\sin {{50}^0}}}{{\sin {{70}^0}}} \approx 24,5\)

Vậy khoảng cách từ vị trí A đến con tàu C  là 24,5 m

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"