Giải bài 37 trang 92 SBT toán 10 - Cánh diều

2024-09-14 10:36:41

Đề bài

Cho tứ giác ABCD, O là trung điểm của AB. Chứng minh \(\overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow {AC}  + \overrightarrow {BD} \)(*)

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc 3 điểm (chọn O là điểm trung gian) và trung điểm của đoạn thẳng để biến đổi một vế của (*) bằng vế còn lại

Lời giải chi tiết

Do O là trung điểm của AB nên \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow 0 \)

Biến đổi vế phải của (*) ta có:

\(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {OC}  - \overrightarrow {OA}  + \overrightarrow {OD}  - \overrightarrow {OB}  = (\overrightarrow {OC}  + \overrightarrow {OD} ) - (\overrightarrow {OA}  + \overrightarrow {OB} )\)

\( = (\overrightarrow {OC}  + \overrightarrow {OD} ) - \overrightarrow 0  = \overrightarrow {OC}  + \overrightarrow {OD} \) = Vế trái (*) (ĐPCM)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"