Giải bài 52 trang 100 SBT toán 10 - Cánh diều

2024-09-14 10:36:45

Đề bài

Cho tam giác ABC. Xác định các điểm M, N, P trong môi trường hợp sau:

a) \(\overrightarrow {AM}  = \overrightarrow {CB} \)    

b) \(\overrightarrow {AN}  =  - \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)

c) \(\overrightarrow {PA}  - \overrightarrow {PB}  + 2\overrightarrow {PC}  = \overrightarrow 0 \)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định hướng và độ lớn các vectơ (sử dụng các quy tắc cộng, trừ, quy tắc hình bình hành,…)

Bước 2: Xác định vị trí các điểm M, N, P dựa vào hướng và độ lớn các vectơ tương ứng rồi kết luận

Lời giải chi tiết

a) Theo giả thiết, \(\overrightarrow {AM}  = \overrightarrow {CB} \)\( \Rightarrow \) \(\overrightarrow {AM} \) cùng hướng và có độ lớn bằng \(\overrightarrow {CB} \)

Vậy điểm M thuộc đường thẳng đi qua A, song song với BC sao cho AMBC là hình bình hành

 

b) Theo giả thiết, \(\overrightarrow {AN}  =  - \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)

Dựng hình bình hành ABDC, theo quy tắc hình bình hành ta có \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \)\( \Rightarrow \overrightarrow {AN}  =  - \frac{1}{2}\overrightarrow {AD} \)

Vậy điểm N thuộc tia đối của tia AD thỏa mãn \(AN = \frac{1}{2}AD\)

 

c) Theo giả thiết, \(\overrightarrow {PA}  - \overrightarrow {PB}  + 2\overrightarrow {PC}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {BA}  + 2\overrightarrow {PC}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {PC}  =  - \frac{1}{2}\overrightarrow {BA} \)

Dựng hình bình hành ABCD. Khi đó P là trung điểm của CD

Vậy điểm P là trung điểm đoạn thẳng CD thỏa mãn ABCD là hình bình hành

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"