Giải bài 25 trang 14 SBT toán 10 - Cánh diều

2024-09-14 10:37:02

Đề bài

Cho đa giác lồi n đỉnh (n > 3). Biết rằng, số đường chéo của đa giác đó là 170. Tìm n.

Phương pháp giải - Xem chi tiết

Bước 1: Tính số đường chéo được tạo từ n đỉnh tạo thành phương trình ẩn n với vế phải bằng 170

Bước 2: Giải phương trình tìm được ở bước 1 để tìm n

Lời giải chi tiết

Đa giác lồi có n đỉnh thì có n cạnh.

Số cách chọn 2 đỉnh trong n đỉnh là: \(C_{12}^2\) cách chọn

\( \Rightarrow \) Số đường chéo cần tìm là \(C_n^2 - n\)

Theo đề bài, ta có số đường chéo của đa giác là 170

\( \Rightarrow C_n^2 - n = 170 \Leftrightarrow \frac{{n!}}{{2!(n - 2)!}} - n = 170\)\( \Leftrightarrow \frac{{n(n - 1)(n - 2)!}}{{2(n - 2)!}} - n = 170 \Leftrightarrow \frac{{n(n - 1)}}{2} - n = 170\)

                         \( \Leftrightarrow n(n - 1) - 2n = 340 \Leftrightarrow {n^2} - 3n - 340 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 20\\n =  - 17\end{array} \right.\)

n > 3 nên ta nhận n = 20

Vậy n = 20 thỏa mãn yêu cầu bài toán

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"