Giải bài 46 trang 18 sách bài tập toán 10 - Cánh diều

2024-09-14 10:37:17

Đề bài

Xác định hệ số của \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức khai triển: \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\) với \(a = 2x,b = 3\)

Lời giải chi tiết

Ta có: \({(2x + 3)^5} = {(2x)^5} + 5.{(2x)^4}.3 + 10.{(2x)^3}{.3^2} + 10.{(2x)^2}{.3^3} + 5.2x{.3^4} + {3^5}\)

                      \( = 32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243\)

Số hạng chứa \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\) là \(240{x^4}\)

Vậy hệ số của \({x^4}\) trong khai triển biểu thức \({(2x + 3)^5}\) là 240

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"