Giải bài 44 trang 18 sách bài tập toán 10 - Cánh diều

2024-09-14 10:37:17

Đề bài

Khai triển các biểu thức sau: 

a) \({(x - 2y)^4}\)                                            b) \({( - 3x - y)^5}\)

Phương pháp giải - Xem chi tiết

a) Áp dụng công thức khai triển: \({(a - b)^4} = {a^4} - 4{a^3}b + 6{a^2}{b^2} - 4a{b^3} + {b^4}\) với \(a = x,b = 2y\)

b) Áp dụng công thức khai triển: \({(a - b)^5} = {a^5} - 5{a^4}b + 10{a^3}{b^2} - 10{a^2}{b^3} + 5a{b^4} - {b^5}\) với \(a =  - 3x,b = y\)

Lời giải chi tiết

a) \({(x - 2y)^4} = {x^4} - 4{x^3}.2y + 6{x^2}.{(2y)^2} - 4x.{(2y)^3} + {(2y)^4}\)\( = {x^4} - 8{x^3}y + 24{x^2}{y^2} - 32x{y^3} + 16{y^4}\)

b) \({( - 3x - y)^5} = {( - 3x)^5} - 5.{( - 3x)^4}y + 10.{( - 3x)^3}.{y^2} - 10.{( - 3x)^2}.{y^3} + 5.( - 3x).{y^4} - {y^5}\)

                   \( =  - 243{x^5} - 405{x^4}y - 270{x^3}{y^2} - 90{x^2}{y^3} - 15x{y^4} - {y^5}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"