Giải bài 35 trang 48 sách bài tập toán 10 - Cánh diều

2024-09-14 10:37:27

Đề bài

Từ bộ rút lơ khơ có 52 quân bài thường đang được úp, rút ngẫu nhiên đồng thời 4 quân bài. Tính xác suất các biến cố sau:

a) A: “Rút được 4 quân bài cùng 1 giá trị”

b) B: “Rút được 4 quân bài có cùng chất”

c) C: “Trong 4 quân bài rút được chỉ có 2 quân Át”

Phương pháp giải - Xem chi tiết

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

+ Rút 4 quân bài (không sắp thứ tự) từ 52 quân bài \( \Rightarrow n\left( \Omega  \right) = C_{52}^4\)

a) A: “Rút được 4 quân bài cùng 1 giá trị”

Trong bộ 52 quân bài có 13 nhóm 4 quân bài cùng một giá trị.

\( \Rightarrow n\left( A \right) = 13\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{13}}{{C_{52}^4}} = \frac{1}{{20825}}\)

b) B: “Rút được 4 quân bài có cùng chất”

Có 4 cách chọn chất của bộ bài. Mỗi chất có 13 quân bài.

Số cách chọn 4 quân bài ở mỗi chất là số tổ hợp chập 4 của 13.

\( \Rightarrow n\left( B \right) = 4.C_{13}^4\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{4.C_{13}^4}}{{C_{52}^4}} = \frac{{44}}{{4165}}\)

c) C: “Trong 4 quân bài rút được chỉ có 2 quân Át”

Số quân Át trong bộ bài là 4. Sau khi chọn 2 quân Át (từ 4 quân Át) thì 2 quân còn lại được chọn từ 48 quân bài bài không phải Át.

\( \Rightarrow n\left( C \right) = C_4^2.C_{48}^2\)

\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{C_4^2.C_{48}^2}}{{C_{52}^4}} = \frac{{6768}}{{270725}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"