Giải bài 9 trang 62 SBT toán 10 - Cánh diều

2024-09-14 10:37:33

Đề bài

Trong mặt phẳng toạ độ Oxy, cho ba điểm không thẳng hàng A(– 4 ; 2), B(2 ; 4), C(8 ; – 2). Tìm toạ độ của điểm D sao cho tứ giác ABCD là hình bình hành.

Phương pháp giải - Xem chi tiết

Bước 1: Tham số hóa tọa độ điểm D và xác định tọa độ vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \)

Bước 2: Áp dụng kết quả tứ giác ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {DC}  = \overrightarrow {AB} \) để tìm tọa độ điểm D

Lời giải chi tiết

Giả sử D(a; b) ta có \(\overrightarrow {DC}  = (8 - a; - 2 - b)\) và \(\overrightarrow {AB}  = (6;2)\)

ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {DC}  = \overrightarrow {AB}  \Leftrightarrow \left\{ \begin{array}{l}8 - a = 6\\ - 2 - b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 4\end{array} \right. \Rightarrow D(2; - 4)\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"