Giải bài 31 trang 74 SBT toán 10 - Cánh diều

2024-09-14 10:37:38

Đề bài

Cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 4 + t\\y =  - 1 + 2t\end{array} \right.\) và điểm A(2 ; 1). Hai điểm M, N nằm trên ∆.

a) Tìm toạ độ điểm M sao cho AM = \(\sqrt {17} \)

b) Tìm toạ độ điểm N sao cho đoạn thẳng AN ngắn nhất

Phương pháp giải - Xem chi tiết

Bước 1: Tham số hóa điểm MN theo PT tham số ∆

Bước 2: Sử dụng công thức khoảng cách để lập biểu thức độ dài AMAN

Bước 3: Giải PT để tìm tọa độ điểm M và đánh giá biểu thức độ dài AN để tìm điểm N thỏa mãn giả thiết

Lời giải chi tiết

Do \(M,N \in \Delta \) nên \(M(4 + t; - 1 + 2t)\) và \(N(4 + k; - 1 + 2k)\)

a) Ta có: \(\overrightarrow {AM}  = (t + 2;2t - 2)\)

Theo giả thiết, AM = \(\sqrt {17} \) \( \Rightarrow A{M^2} = 17 \Leftrightarrow {(t + 2)^2} + {(2t - 2)^2} = 17\)\( \Leftrightarrow 5{t^2} - 4t - 9 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = \frac{9}{5}\end{array} \right.\)

Với t = -1 thì \(M(3; - 3)\)

Với \(t = \frac{9}{5}\) thì \(M\left( {\frac{{29}}{5};\frac{{13}}{5}} \right)\)

Vậy có 2 điểm M thỏa mãn là \(M(3; - 3)\) và \(M\left( {\frac{{29}}{5};\frac{{13}}{5}} \right)\)

b) Ta có: \(\overrightarrow {AN}  = (k + 2;2k - 2)\)

\(AN = \sqrt {{{\left( {k + 2} \right)}^2} + {{(2k - 2)}^2}} \)\( \Leftrightarrow A{N^2} = {\left( {k + 2} \right)^2} + {(2k - 2)^2} \Leftrightarrow A{N^2} = 5{k^2} - 4k + 8\)

AN nhỏ nhất \( \Leftrightarrow A{N^2} = 5{k^2} - 4k + 8\) nhỏ nhất

Ta có: \(5{k^2} - 4k + 8 = 5{\left( {k - \frac{2}{5}} \right)^2} + \frac{{44}}{5}\)\( \Rightarrow A{N^2} \ge \frac{{44}}{5} \Rightarrow AN \ge \frac{{2\sqrt {55} }}{5}\)

Dấu “=” xảy ra khi và chỉ khi \(k = \frac{2}{5}\) \( \Rightarrow N\left( {\frac{{22}}{5}; - \frac{1}{5}} \right)\)

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"