Giải bài 56 trang 89 SBT toán 10 - Cánh diều

2024-09-14 10:37:44

Đề bài

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x + 2)2 + (y − 4)2 = 25 và điểm A(-1; 3).

a) Xác định vị trí tương đối của điểm A đối với đường tròn (C)

b) Đường thẳng d thay đổi đi qua A cắt đường tròn tại MN. Viết phương trình đường thẳng d sao cho MN ngắn nhất

Phương pháp giải - Xem chi tiết

Bước 1: Xác định tọa độ tâm I và bán kính R của (C)

Bước 2: So sánh độ dài IA và bán kính R để xét vị trí tương đối của A với (C)

Bước 3: Áp dụng tính chất dây cung càng xa tâm có độ dài càng nhỏ để tìm GTLN của \(d(I,d)\)

Bước 4: Viết PTTQ của d với các yếu tố tìm được ở bước 3

Lời giải chi tiết

a) (C) có tâm I(-2 ; 4) và bán kính R = 5

Ta có: \(\overrightarrow {IA}  = (1; - 1) \Rightarrow IA = \sqrt 2 \)

Có: \(IA = \sqrt 2  < R \Rightarrow \) Điểm A nằm bên trong đường tròn (C)

b) Theo giả thiết, d cắt (C) tại 2 điểm M, N thỏa mãn MN ngắn nhất \( \Leftrightarrow \) khoảng cách từ tâm I đến d lớn nhất

Gọi H là hình chiếu của I trên d. Ta có: \(IH \le IA\)

\( \Rightarrow \) IH đạt GTLN khi và chỉ khi H trùng với A

\( \Rightarrow IA \bot d\) \( \Rightarrow d\) nhận \(\overrightarrow {IA}  = (1; - 1)\) làm vectơ pháp tuyến nên có PT: xy + 4 = 0

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"