Giải bài 54 trang 89 SBT toán 10 - Cánh diều

2024-09-14 10:37:44

Đề bài

Viết phương trình đường tròn (C) trong mỗi trường hợp sau:

a) (C) có tâm I(−6 ; 2) bán kính 7

b) (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)

c) (C) có tâm I(1 ; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0

d) (C) có đường kính AB với A(−2 ; 3) và B(0 ; 1)

e) (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0

Phương pháp giải - Xem chi tiết

+) Từ câu a  câu d xác định bán kính của (C) rồi viết PT đường tròn dạng chính tắc

+) Xét câu e

Bước 1: Tham số hóa tọa độ tâm I

Bước 2: Lập PT từ giả thiết: \(d(I,{\Delta _2}) = d(I,{\Delta _3})\)

Bước 3: Giải PT tìm được ở bước 2 để tìm tọa độ tâm I và bán kính đường tròn rồi viết PT đường tròn dạng chính tắc

Lời giải chi tiết

a) (C) có tâm I(−6 ; 2) bán kính 7 nên có PT: \({(x + 6)^2} + {(y - 2)^2} = 49\)

b) (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1) \( \Rightarrow \) Bán kính của (C) là \(IA = \sqrt {{{(4 - 3)}^2} + {{(1 + 7)}^2}}  = \sqrt {65} \)

\( \Rightarrow \)(C) có PT: \({(x - 3)^2} + {(y + 7)^2} = 65\)

c) (C) có tâm I(1 ; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0

\( \Rightarrow \) Bán kính của (C) là khoảng cách từ tâm I đến đường thẳng ∆: 3x + 4y + 19 = 0

Ta có: \(d(I,\Delta ) = \frac{{\left| {3.1 + 4.2 + 19} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{30}}{5} = 6\)

\( \Rightarrow \)(C) có PT: \({(x - 1)^2} + {(y - 2)^2} = 36\)

d) (C) có đường kính AB với A(−2 ; 3) và B(0 ; 1)

\( \Rightarrow \) (C) có tâm I là trung điểm của AB \( \Rightarrow I( - 1;2)\)

(C) có bán kính IA = IB = \(\sqrt 2 \)

\( \Rightarrow \)(C) có PT: \({(x + 1)^2} + {(y - 2)^2} = 2\)

e) (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0

Do \(I \in {\Delta _1}\) nên \(I(1 + t;1 - t)\)

Theo giả thiết, \(R = d(I,{\Delta _2}) = d(I,{\Delta _3}) \Leftrightarrow \frac{{\left| {3(1 + t) + 4(1 - t) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{\left| {3(1 + t) - 4(1 - t) + 2} \right|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }}\)

                                                        \( \Leftrightarrow \left| {6 - t} \right| = \left| {7t + 1} \right| \Leftrightarrow \left[ \begin{array}{l}6 - t = 7t + 1\\6 - t =  - 7t - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = \frac{5}{8}\\t = \frac{{ - 7}}{6}\end{array} \right.\)

Với \(t = \frac{5}{8} \Rightarrow I\left( {\frac{{13}}{8};\frac{3}{8}} \right)\) \( \Rightarrow \)\(R = \frac{{43}}{{40}}\). Khi đó (C) có PT: \({\left( {x - \frac{{13}}{8}} \right)^2} + {\left( {y - \frac{3}{8}} \right)^2} = \frac{{1849}}{{1600}}\)

Với \(t =  - \frac{7}{6} \Rightarrow I\left( { - \frac{1}{6};\frac{{13}}{6}} \right)\)\( \Rightarrow \)\(R = \frac{{43}}{{30}}\). Khi đó (C) có PT: \({\left( {x + \frac{1}{6}} \right)^2} + {\left( {y - \frac{{13}}{6}} \right)^2} = \frac{{1849}}{{900}}\)

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"