Giải bài 70 trang 97 SBT toán 10 - Cánh diều

2024-09-14 10:37:46

Đề bài

Cho parabol (P) có phương trình chính tắc: y2 = 2px (p > 0) và đường thẳng x = m (m > 0) cắt (P) tại hai điểm I, K phân biệt. Chứng minh hai điểm IK đối xứng nhau qua trục Ox.

Phương pháp giải - Xem chi tiết

Bước 1: Tham số hóa tọa độ I, K theo PT đường thẳng x = m

Bước 2: Thay tọa độ I, K vào PT (P) và chứng minh tung độ 2 điểm này trái dấu rồi kết luận

Lời giải chi tiết

Do \(I,K \in d:x = m\) nên \(I(m;t),K(m;k)\)

Do \(I,K \in (P)\) nên \(\left\{ \begin{array}{l}{t^2} = 2pm\\{k^2} = 2pm\end{array} \right.\)\( \Leftrightarrow {t^2} = {k^2} \Leftrightarrow \left\{ \begin{array}{l}t = k\\t =  - k\end{array} \right.\)

Với t = k thì IK trùng nhau \( \Rightarrow \) t = k không thỏa mãn

Với t = -k thì I(m ; t) và K(m ; -t). Khi đó IK đối xứng nhau qua trục Ox (ĐPCM)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"