Giải bài 66 trang 97 SBT toán 10 - Cánh diều

2024-09-14 10:37:47

Đề bài

Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.

Phương pháp giải - Xem chi tiết

Bước 1: Tham số hóa tọa độ điểm P và thay tọa độ P vào PT (E)

Bước 2: Lập hệ PT 2 ẩn m2, n2 theo giả thiết

Bước 3: Giải hệ PT tìm tọa độ điểm P

Lời giải chi tiết

Giả sử điểm P có tọa độ P(m ; n)

Do \(P \in (E)\) nên \(\frac{{{m^2}}}{9} + \frac{{{n^2}}}{4} = 1\)

Theo giả thiết, \(OP = 2,5 \Rightarrow O{P^2} = 6,25 \Leftrightarrow {m^2} + {n^2} = 6,25\)

Ta có hệ PT: \(\left\{ \begin{array}{l}{m^2} + {n^2} = 6,25\\\frac{{{m^2}}}{9} + \frac{{{n^2}}}{4} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} = \frac{{81}}{{20}}\\{n^2} = \frac{{11}}{5}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m =  \pm \frac{{9\sqrt 5 }}{{10}}\\n =  \pm \frac{{\sqrt {55} }}{5}\end{array} \right.\)

Vậy có 4 điểm P thỏa mãn là: \({P_1}\left( {\frac{{9\sqrt 5 }}{{10}};\frac{{\sqrt {55} }}{5}} \right),{P_2}\left( { - \frac{{9\sqrt 5 }}{{10}};\frac{{\sqrt {55} }}{5}} \right),{P_3}\left( {\frac{{9\sqrt 5 }}{{10}}; - \frac{{\sqrt {55} }}{5}} \right),{P_4}\left( { - \frac{{9\sqrt 5 }}{{10}}; - \frac{{\sqrt {55} }}{5}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"