Giải bài 84 trang 99 SBT toán 10 - Cánh diều

2024-09-14 10:37:50

Đề bài

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(1 ; 0) và B(0 ; 3). Tìm tập hợp các điểm M thỏa mãn

MA = 2MB.

Phương pháp giải - Xem chi tiết

Bước 1: Tham số hóa tọa độ điểm M rồi tính độ dài MA, MB

Bước 2: Biến đổi giả thiết MA = 2MB rồi kết luận về tập hợp các điểm M thỏa mãn

Lời giải chi tiết

Gọi M(x ; y)

Ta có: \(\overrightarrow {AM}  = (a - 1;b) \Rightarrow AM = \sqrt {{{(x - 1)}^2} + {y^2}}  \Rightarrow A{M^2} = {(x - 1)^2} + {y^2}\)

         \(\overrightarrow {BM}  = (a;b - 3) \Rightarrow BM = \sqrt {{x^2} + {{(y - 3)}^2}}  \Rightarrow B{M^2} = {x^2} + {(y - 3)^2}\)

Theo giả thiết, \(MA = 2MB \Rightarrow M{A^2} = 4M{B^2}\) \( \Leftrightarrow {(x - 1)^2} + {y^2} = 4\left[ {{x^2} + {{(y - 3)}^2}} \right]\)

                                           \( \Leftrightarrow 3{x^2} + 3{y^2} + 2x - 24y + 35 = 0\)\( \Leftrightarrow {x^2} + {y^2} + \frac{2}{3}x - 8y + \frac{{35}}{3} = 0\)

                                     \( \Leftrightarrow {\left( {x + \frac{1}{3}} \right)^2} + {\left( {y - 4} \right)^2} = \frac{{40}}{9}\)

Vậy tập hợp các điểm M thỏa mãn MA = 2MB  là đường tròn có PT: \({\left( {x + \frac{1}{3}} \right)^2} + {\left( {y - 4} \right)^2} = \frac{{40}}{9}\) với tâm là \(I\left( { - \frac{1}{3};4} \right)\) và bán kính \(R = \frac{{2\sqrt {10} }}{3}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"