Giải bài 83 trang 99 SBT toán 10 - Cánh diều

2024-09-14 10:37:51

Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABCA(−1 ; −2), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình là 5x + y – 9 = 0 và x + 3y − 5 = 0. Tìm toạ độ của hai điểm BC.

Phương pháp giải - Xem chi tiết

Bước 1: Viết phương trình đường thẳng AB (có VTPT là VTCP của CH)

Bước 2: Giải hệ 2 PT BMAB để tìm tọa độ điểm B

Bước 3: Tham số hóa điểm M theo PT BM và biểu diễn tọa độ C theo tham số đó

Bước 4: Thay tọa độ tham số của điểm C vào PT CH rồi tìm tọa độ điểm C

Lời giải chi tiết

Gọi BM là đường trung tuyến kẻ từ B \( \Rightarrow BM\) có PT: 5x + y – 9 = 0

Gọi CH là đường cao kẻ từ C \( \Rightarrow CH\) có PT: x + 3y − 5 = 0

CH có VTPT \(\overrightarrow {{n_1}}  = (1;3)\) \( \Rightarrow CH\) có VTCP \(\overrightarrow {{u_1}}  = (3; - 1)\)

Ta có: \(CH \bot AB\) \( \Rightarrow AB\) đi qua A(−1 ; −2) và nhận \(\overrightarrow {{u_1}}  = (3; - 1)\) làm VTPT nên có PT:

3xy + 1 = 0

Do B là giao điểm của BMAB nên tọa độ điểm B là nghiệm của hệ PT:

\(\left\{ \begin{array}{l}5x + y - 9 = 0\\3x - y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 4\end{array} \right. \Rightarrow B(1;4)\)

Do \(M \in BM\) nên \(M(t;9 - 5t)\)

Theo giả thiết, M là trung điểm AC \( \Rightarrow C(2t + 1; - 10t + 20)\)

Do \(C \in CH\) nên \(2t + 1 + 3( - 10t + 20) - 5 = 0 \Leftrightarrow  - 28t + 56 = 0 \Leftrightarrow t = 2\) \( \Leftrightarrow C(5;0)\)

Vậy \(B(1;4)\) và \(C(5;0)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"