Giải mục 2 trang 18, 19 SGK Toán 11 tập 1 - Kết nối tri thức

2024-09-14 12:35:59

Hoạt động 2

Lấy b = a trong các công thức cộng, hãy tìm công thức tính: \(\sin 2a;\cos 2a;\tan 2a\).

Phương pháp giải:

Sử dụng công thức cộng lượng giác

Lời giải chi tiết:

\(\sin 2a = \sin \left( {a + a} \right) = \sin \left( {a + b} \right) = \sin a\cos b + \sin b\cos a = 2\sin a\cos a\)

\(\cos 2a = \cos \left( {a + a} \right) = \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b = {\cos ^2}a - {\sin ^2}a = 2{\cos ^2}a - 1\)

\( = 1 - 2{\sin ^2}a\)

\(\tan 2a = \tan \left( {a + a} \right) = \tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\)


Luyện tập 2

Không dùng máy tính, tính \(\cos \frac{\pi }{8}\) 

Phương pháp giải:

Sử dụng công thức hạ bậc \({\cos ^2}a = \frac{{1 + \cos 2a}}{2}\)

Lời giải chi tiết:

Ta có: \({\cos ^2}\frac{\pi }{8} = \frac{{1 + \cos \frac{\pi }{4}}}{2} = \frac{{1 + \frac{{\sqrt 2 }}{2}}}{2} = \frac{{2 + \sqrt 2 }}{4}\)

Suy ra: \(\cos \frac{\pi }{8} = \frac{1}{2}\sqrt {2 + \sqrt 2 } \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"