Đề bài
Tìm tập giá trị của các hàm số sau:
a) \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1;\)
b) \(y = \sin x + \cos x\).
Phương pháp giải - Xem chi tiết
Tập giá trị của hàm số là tập min – max của hàm số trên tập xác định
Lời giải chi tiết
a) Tập xác định của hàm số là \(D = \mathbb{R}\)
Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)
\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Ta có:
\(\begin{array}{l}y = \sin x + \cos x\\ = \cos \left( {\frac{\pi }{2} - \alpha } \right) + \cos \alpha \\ = 2\cos \left( {\frac{{\frac{\pi }{2} - \alpha + \alpha }}{2}} \right)\cos \left( {\frac{{\frac{\pi }{2} - \alpha - \alpha }}{2}} \right)\\ = 2.\cos \frac{\pi }{4}.\cos \frac{{\frac{\pi }{2} - 2\alpha }}{2}\\ = 2.\frac{{\sqrt 2 }}{2}.\cos \left( {\frac{\pi }{4} - \alpha } \right)\\ = \sqrt 2 .\cos \left( {\frac{\pi }{4} - \alpha } \right)\end{array}\)
Vì \( - 1 \le \cos \left( {\frac{\pi }{4} - \alpha } \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 .\cos \left( {\frac{\pi }{4} - \alpha } \right) \le \sqrt 2 \).
Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - \sqrt 2 ;\sqrt 2 } \right]\).