Bài 2.24 trang 56 SGK Toán 11 tập 1 - Kết nối tri thức

2024-09-14 12:36:28

Đề bài

Cho dãy số \(({u_n})\) với \({u_n} = 3n + 6\). Khẳng định nào sau đây là đúng?

A. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

B. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 6\).

C. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 3\).

D. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 6\).

Phương pháp giải - Xem chi tiết

Để chứng minh dãy số \(\left( {{u_n}} \right)\) là cấp số cộng, ta chứng minh \({u_n} - {u_{n - 1}} =d \)  không đổi.

Lời giải chi tiết

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"