Bài 3.15 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức

2024-09-14 12:36:45

Đề bài

Một bảng xếp hạng đã tính điểm chuẩn hóa cho chi số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

Xác định điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam.

Phương pháp giải - Xem chi tiết

Xác định điểm ngưỡng thuộc tứ phân vị thứ ba

Để tính tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_3}\). Giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right)\). Khi đó,

\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} +  \ldots  + {m_{p - 1}}} \right)}}{{{m_p}}}.\left( {{a_{p + 1}} - {a_p}} \right)\).

Trong đó, n là cỡ mẫu, \({m_p}\) là tần số nhóm p, với \(p = 1\) ta quy ước \({m_1} +  \ldots  + {m_{p - 1}} = 0\).

Lời giải chi tiết

Điểm ngưỡng để đưa ra danh sách 25% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.

Ta có: cỡ mẫu n = 35.

Tứ phân vị thứ ba \({Q_3}\) là \({x_{27}}\). Do \({x_{27}}\) đều thuộc nhóm \(\left[ {30;40} \right)\) nên nhóm náy chứa \({Q_3}\). Do đó,

\(p = 3;\;\;{a_3} = 30;\;\;{m_3} = 6;\;\;{m_1} + {m_2} = 4 + 19 = 23;\;{a_4} - {a_3} = 10\)

Ta có: \({Q_3} = 30 + \frac{{\frac{{3 \times 35}}{4} - 23}}{6} \times 10 = 35,42\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"