Bài 4.4 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

2024-09-14 12:36:50

Đề bài

Cho hình chóp tứ giác S.ABCDM là một điểm thuộc cạnh SC (M khác S, C). Giả sử hai đường thẳng ABCD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) (SCD).

Phương pháp giải - Xem chi tiết

Để chứng minh giao tuyến của hai mặt phẳng, ta tìm hai điểm cùng thuộc cả hai mặt phẳng đó.

Lời giải chi tiết

Ta có N thuộc đường thẳng AB , mà AB nằm trong mặt phẳng (ABM) nên N cũng nằm trong mp(ABM)

MN đều nằm trong mặt phẳng (ABM) nên MN nằm trong mp(ABM) (1)

M thuộc SC suy ra M nằm trong mp(SCD), N thuộc đường thẳng CD nên N nằm trong mp(SCD)

Do đó, MN nằm trong mp(SCD) (2)

Từ (1) và (2) suy ra MN là giao tuyến của hai mp(ABM) và (SCD)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"