Đề bài
Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Tìm \(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to {2^ - }} f\left( x \right)\)
Phương pháp giải - Xem chi tiết
Áp dụng giới hạn trái, giới hạn phải để tính.
Lời giải chi tiết
Khi \(x \to {2^ + } \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) > 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = + \infty \)
Khi \(x \to {2^ - } \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right) < 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \)