Bài 5.9 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức

2024-09-14 12:37:51

Đề bài

Cho hàm số \(H(t) = \left\{ \begin{array}{l}0,t < 0\\1,t \ge 0\end{array} \right.\)  (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thười điểm t = 0).

Tính \(\mathop {{\rm{lim}}}\limits_{t \to {0^ + }} H\left( t \right)\) và \(\mathop {{\rm{lim}}}\limits_{t \to 0^-} \;H\left( t \right).\)

Phương pháp giải - Xem chi tiết

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta có hàm số \(f\left( x \right)\) có giới hạn là số L khi \(x \to  + \infty \) nếu dãy số \(\left( {{x_n}} \right)\) bất kỳ, \({x_n} > a\) và \({x_n} \to  + \infty \), ta có \(f\left( {{x_n}} \right) \to L,\) kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L\;\)hay \(f\left( x \right) \to L\) khi \(x \to  + \infty \).

Lời giải chi tiết

\(\mathop {\lim }\limits_{t \to {0^ + }} H\left( t \right) =\mathop {\lim }\limits_{t \to {0^ + }} 1= 1\)

\(\mathop {\lim }\limits_{t \to {0 }} H\left( t \right) = \mathop {\lim }\limits_{t \to {0^-}} 0=0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"