Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức

2024-09-14 12:37:59

Đề bài

Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho

a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{x},\;x \ne 0}\\{1\;,\;x = 0}\end{array}} \right.\;\;\)gián đoạn tại \(x = 0\)

b) \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + x\;,\;x < 1}\\{2 - x\;,x \ge 1}\end{array}} \right.\;\;\)gián đoạn tại \(x = 1\)

Phương pháp giải - Xem chi tiết

Dùng định nghĩa liên tục của hàm số để giải thích

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{1}{x} =  + \infty \)

\(f\left( 0 \right) = 1\)

Vì \(f\left( 0 \right) \ne \mathop {\lim }\limits_{x \to 0} f\left( x \right)\) suy ra hàm số gián đoạn tại \(x = 0\)

b) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x} \right) = 2\)

\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2 - x} \right) = 1\)

\(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right)\)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\)

Vậy hàm số gián đoạn tại \(x = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"