Giải mục 2 trang 11, 12, 13 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:38:08

HĐ 2

Cho M = 25, N = 23. Tính và so sánh:

a) \({\log _2}\left( {MN} \right)\) và \({\log _2}M + {\log _2}N;\)

b) \({\log _2}\left( {\frac{M}{N}} \right)\) và \({\log _2}M - {\log _2}N.\)

Phương pháp giải:

Sử dụng công thức \({\log _a}{a^\alpha } = \alpha .\)

Lời giải chi tiết:

a)

\(\begin{array}{l}{\log _2}\left( {MN} \right) = {\log _2}\left( {{2^5}{{.2}^3}} \right) = {\log _2}{2^8} = 8;\\{\log _2}M + {\log _2}N = {\log _2}{2^5} + {\log _2}{2^3} = 5 + 3 = 8\\ \Rightarrow {\log _2}\left( {MN} \right) = {\log _2}M + {\log _2}N\end{array}\)

b)

\(\begin{array}{l}{\log _2}\left( {\frac{M}{N}} \right) = {\log _2}\frac{{{2^5}}}{{{2^3}}}{\log _2}{2^2} = 2\\{\log _2}M - {\log _2}N = {\log _2}{2^5} - {\log _2}{2^3} = 5 - 3 = 2\\ \Rightarrow {\log _2}\left( {\frac{M}{N}} \right) = {\log _2}M - {\log _2}N\end{array}\)


LT 2

Rút gọn biểu thức:

\(A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right)\,\,\,\,\left( {x > 1} \right).\)

Phương pháp giải:

Sử dụng công thức \({\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N\)

Lời giải chi tiết:

\(\begin{array}{c}A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right) = {\log _2}\frac{{{x^3} - x}}{{x + 1}} - {\log _2}\left( {x - 1} \right) = {\log _2}\frac{{x\left( {{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = {\log _2}\frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} = {\log _2}x.\end{array}\)


HĐ 3

Giả sử đã cho \({\log _a}M\) và ta muốn tính \({\log _b}M.\) Để tìm mối liên hệ giữa \({\log _a}M\) và \({\log _b}M,\) hãy thực hiện các yêu cầu sau:

a) Đặt \(y = {\log _a}M,\) tính M theo y;

b) Lấy loogarit theo cơ số b cả hai vế của kết quả nhận được trong câu a, từ đó suy ra công thức mới để tính y.

Phương pháp giải:

Sử dụng lý thuyết \(\alpha  = {\log _a}M \Leftrightarrow {a^\alpha } = M.\)  

Lời giải chi tiết:

a) \(y = {\log _a}M \Leftrightarrow M = {a^y}\)

b) Lấy loogarit theo cơ số b cả hai vế của \(M = {a^y}\) ta được

\({\log _b}M = {\log _b}{a^y} \Leftrightarrow {\log _b}M = y{\log _b}a \Leftrightarrow y = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}\)


LT 3

Không dùng máy tính cầm tay, hãy tính \({\log _9}\frac{1}{{27}}.\)

Phương pháp giải:

Sử dụng công thức \({\log _a}M = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}.\)

Lời giải chi tiết:

\({\log _9}\frac{1}{{27}} = {\log _{{3^2}}}{3^{ - 3}} = \frac{{{{\log }_3}{3^{ - 3}}}}{{{{\log }_3}{3^2}}} = \frac{{ - 3}}{2}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"