Bài 6.20 trang 24 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:38:19

Đề bài

Giải các phương trình sau:

a) \({3^{x - 1}} = 27;\)                                                 

b) \({100^{2{x^2} - 3}} = 0,{1^{2{x^2} - 18}};\) 

c) \(\sqrt 3 {e^{3x}} = 1;\)                                                      

d) \({5^x} = {3^{2x - 1}}.\)

Phương pháp giải - Xem chi tiết

Đưa 2 vế về cùng cơ số thì số mũ bằng nhau.

Lời giải chi tiết

a)

 \(\begin{array}{l}{3^{x - 1}} = 27\\ \Leftrightarrow {3^{x - 1}} = {3^3}\\ \Leftrightarrow x - 1 = 3 \Leftrightarrow x = 4\end{array}\)          

Vậy phương trình có nghiệm x = 4.                              

b)

\(\begin{array}{l}{100^{2{x^2} - 3}} = 0,{1^{2{x^2} - 18}}\\ \Leftrightarrow {\left( {{{10}^2}} \right)^{2{x^2} - 3}} = {\left( {{{10}^{ - 1}}} \right)^{2{x^2} - 18}}\\ \Leftrightarrow {10^{4{x^2} - 6}} = {10^{ - 2{x^2} + 18}}\\ \Leftrightarrow 4{x^2} - 6 =  - 2{x^2} + 18\\ \Leftrightarrow 6{x^2} = 24 \Leftrightarrow {x^2} = 4 \Leftrightarrow x =  \pm 2\end{array}\)     

Vậy phương trình có tập nghiệm \(S = \left\{ { - 2;2} \right\}\)

c) \(\sqrt 3 {e^{3x}} = 1 \Leftrightarrow {e^{3x}} = \frac{{\sqrt 3 }}{3} \Leftrightarrow 3x = \ln \frac{{\sqrt 3 }}{3} \Leftrightarrow x = \frac{1}{3}\ln \frac{{\sqrt 3 }}{3}\)                               

Vậy phương trình có nghiệm \(x = \frac{1}{3}\ln \frac{{\sqrt 3 }}{3}\)  

d) \({5^x} = {3^{2x - 1}}\)

Loogarit cơ số 3 hai vế ta có \({\log _3}{5^x} = {\log _3}{3^{2x - 1}} \Leftrightarrow x{\log _3}5 = 2x - 1 \Leftrightarrow x\left( {{{\log }_3}5 - 2} \right) =  - 1 \Leftrightarrow x = \frac{{ - 1}}{{{{\log }_3}5 - 2}}\)

Vậy phương trình có nghiệm \(x = \frac{{ - 1}}{{{{\log }_3}5 - 2}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"