Bài 6.36 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:38:24

Đề bài

Giải các phương trình sau:

a) \({3^{1 - 2x}} = {4^x}\);                                           

b) \({\log _3}(x + 1) + {\log _3}(x + 4) = 2\)

Phương pháp giải - Xem chi tiết

- Tìm điều kiện của phương trình

- Sử dụng công thức lôgarit để biến đổi giải phương trình.

Lời giải chi tiết

a) \({3^{1 - 2x}} = {4^x}\) (lấy lôgarit cơ số 3 hai vế)

\(\begin{array}{l} \Leftrightarrow {\log _3}{3^{1 - 2x}} = {\log _3}{4^x}\\ \Leftrightarrow 1 - 2x = x{\log _3}4\\ \Leftrightarrow x{\log _3}4 + 2x = 1\\ \Leftrightarrow x\left( {{{\log }_3}4 + 2} \right) = 1\\ \Leftrightarrow x = \frac{1}{{{{\log }_3}4 + 2}} = \frac{1}{{{{\log }_3}4 + {{\log }_3}9}} = \frac{1}{{{{\log }_3}36}} = {\log _{36}}3\end{array}\)                   

Vậy phương trình có nghiệm \(x = {\log _{36}}3\)

b) \({\log _3}(x + 1) + {\log _3}(x + 4) = 2\) (ĐK: x > -1)

\(\begin{array}{l} \Leftrightarrow {\log _3}\left[ {(x + 1)\left( {x + 4} \right)} \right] = 2\\ \Leftrightarrow (x + 1)\left( {x + 4} \right) = {3^2}\\ \Leftrightarrow {x^2} + 5x + 4 - 9 = 0\\ \Leftrightarrow {x^2} + 5x - 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 5 + 3\sqrt 5 }}{2}\left( {TM} \right)\\x = \frac{{ - 5 - 3\sqrt 5 }}{2}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = \frac{{ - 5 + 3\sqrt 5 }}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"