Bài 7.3 trang 30 SGK Toán 11 tập 2 – Kết nối tri thức

2024-09-14 12:38:28

Đề bài

Cho tứ diện ABCD có \(\widehat {CBD} = {90^0}.\)

a) Gọi M, N tương ứng là trung điểm của AB, AD. Chứng minh rằng MN vuông góc BC.

b) Gọi G, K tương ứng là trọng tâm của các tam giác ABC, ACD. Chứng minh rằng GK vuông góc với BC.

Phương pháp giải - Xem chi tiết

Nếu đường thẳng a vuông góc với đường thẳng b thì a có vuông góc với các đường thẳng song song với b.

Lời giải chi tiết

a) Xét tam giác ABD có

M, N tương ứng là trung điểm của AB, AD

\( \Rightarrow \) MN là đường trung bình của tam giác ABD 

\( \Rightarrow \)  MN // BD mà BD \( \bot \) BC (\(\widehat {CBD} = {90^0}\))

\( \Rightarrow \) MN \( \bot \) BC.

b) Vì G, K tương ứng là trọng tâm của các tam giác ABC, ACD nên \(\frac{{CG}}{{CM}} = \frac{{CK}}{{CN}} = \frac{2}{3}\)

\( \Rightarrow \) GK // MN (Định lý Talet) mà MN \( \bot \) BC

\( \Rightarrow \) GK \( \bot \) BC.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"