Bài 7.18 trang 53 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:38:51

Đề bài

Cho hình hộp chữ nhật ABCD. A'B'C'D'.

a) Chứng minh rằng (BDD′B′) \( \bot \) (ABCD).

b) Xác định hình chiếu của AC′ trên mặt phẳng (ABCD).

c) Cho AB = a, BC = b, CC′ = c. Tính AC′.

Phương pháp giải - Xem chi tiết

Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.

Lời giải chi tiết

 

a) Ta có \(BB' \bot \left( {ABCD} \right);BB' \subset \left( {BDD'B'} \right) \Rightarrow \left( {BDD'B'} \right) \bot \left( {ABCD} \right)\)

b) A là hình chiếu của A trên (ABCD)

C là hình chiếu của C’ trên (ABCD) do \(CC' \bot \left( {ABCD} \right)\)

\( \Rightarrow \) AC là hình chiếu của AC’ trên (ABCD)

c) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2} \Rightarrow AC = \sqrt {{a^2} + {b^2}} \)

Xét tam giác AC’C vuông tại C có

\(A{C'^2} = C{C'^2} + A{C^2} = {c^2} + {a^2} + {b^2} \Rightarrow A'C = \sqrt {{a^2} + {b^2} + {c^2}} \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"