Bài 7.44 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:39:25

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, \(AB//CD\) và \(AB = BC = DA = a\), \(CD = 2a\). Biết hai mặt phẳng \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = a\sqrt 2 \). Tính theo \(a\) khoảng cách từ \(S\) đến mặt phẳng \((ABCD)\) và thể tích của khối chóp S.ABCD.

Phương pháp giải - Xem chi tiết

Thể tích khối chóp \(V = \frac{1}{3}h.S\)

Lời giải chi tiết

 

Gọi O là giao điểm của AC và BD

Mà \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) nên \(SO \bot \left( {ABCD} \right)\)

Kẻ \(AK \bot DC\) tại K \( \Rightarrow DK = \frac{{DC - AB}}{2} = \frac{a}{2}\)

Xét tam giác ADK vuông tại K có \(AK = \sqrt {A{D^2} - D{K^2}}  = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác AKC vuông tại K có \(AC = \sqrt {A{K^2} + K{C^2}}  = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{3a}}{2}} \right)}^2}}  = a\sqrt 3 \)

Ta có AB // CD nên \(\frac{{OA}}{{OC}} = \frac{{AB}}{{DC}} = \frac{1}{2} \Rightarrow OA = \frac{1}{3}AC = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác SAO vuông tại O có

\(A'O = \sqrt {AA{'^2} - A{O^2}}  = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \frac{{a\sqrt 2 }}{2}\)

Thể tích của khối chóp S.ABCD là \(V = \frac{{{a^3}\sqrt 5 }}{4}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"