Đề bài
Một hộp đựng 8 viên bi màu xanh và 6 viên bi màu đỏ, có cùng kích thước và khối lượng. Bạn Sơn lấy ngẫu nhiên một viên bi từ hộp (lấy xong không trả lại vào hộp). Tiếp đó đến lượt bạn Tùng lấy ngẫu nhiên một viên bi từ hộp đó. Tính xác suất để bạn Tùng lấy được viên bi màu xanh.
Phương pháp giải - Xem chi tiết
Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)
Lời giải chi tiết
Ta có số cách chọn một viên bi trong hộp là 14.13 = 182
A: “Sơn lấy màu xanh, Tùng lấy màu xanh”
Công đoạn 1: Sơn lấy màu xanh có 8 cách
Công đoạn 2: Tùng lấy màu xanh có 7 cách vì Sơn lấy xong không trả lại vào hộp.
Theo quy tắc nhân, tập A có 8.7 = 56 (phần tử)
\( \Rightarrow P\left( A \right) = \frac{{56}}{{182}} = \frac{4}{{13}}\)
B: “Sơn lấy màu đỏ, Tùng lấy màu xanh”
Công đoạn 1: Sơn lấy màu đỏ có 6 cách
Công đoạn 2: Tùng lấy màu xanh có 8 cách
Theo quy tắc nhân, tập B có 6.8 = 48 (phần tử)
\( \Rightarrow P\left( B \right) = \frac{{48}}{{182}} = \frac{{24}}{{91}}\)
C: “Bạn Tùng lấy được viên bi màu xanh” nên \(C = A \cup B\)
\( \Rightarrow P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{4}{{13}} + \frac{{24}}{{91}} = \frac{4}{7}\)
Vậy xác suất để bạn Tùng lấy được viên bi màu xanh là \(\frac{4}{7}.\)