Đề bài
Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là 0,92 và 0,98.
Dùng sơ đồ hình cây, tính xác suất để:
a) Cả hai chuyến bay khởi hành đúng giờ,
b) Chỉ có duy nhất một trong hai chuyến bay khởi hành đúng giờ,
c) Có ít nhất một trong hai chuyến bay khởi hành đúng giờ.
Phương pháp giải - Xem chi tiết
Nếu hai biến cố A và B độc lập với nhau thì P(AB) = P(A).P(B).
Lời giải chi tiết
Gọi biến cố A: “Chuyến bay của hãng X khởi hành đúng giờ”, biến cố B: “Chuyến bay của hãng Y khởi hành đúng giờ”.
Ta dùng sơ đồ hình cây để mô tả như sau:
Theo sơ đồ hình cây, ta có:
a) \(P\left( {AB} \right) = 0,92.0,98 = 0,9016\)
b) \(P\left( {A\overline B \cup \overline A B} \right) = 0,92.0,02 + 0,08.0,98 = 0,0968\)
c) \(P\left( {\overline A \overline B } \right) = 0,08.0,02 = 0,0016\)
\(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - 0,0016 = 0,9984\)