Giải mục 4 trang 91, 92 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:39:49

HĐ 5

a) Với \(h \ne 0,\) biến đổi hiệu \(\sin \left( {x + h} \right) - \sin x\) thành tích.

b) Sử dụng công thức giới hạn \(\mathop {\lim }\limits_{h \to 0} \frac{{\sin h}}{h} = 1\) và kết quả của câu a, tính đạo hàm của hàm số y = sin x tại điểm x bằng định nghĩa.

Phương pháp giải:

- Công thức lượng giác \(\sin a - \sin b = 2\cos \frac{{a + b}}{2}.\sin \frac{{a - b}}{2}\)

- \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết:

a) \(\sin \left( {x + h} \right) - \sin x = 2\cos \frac{{2x + h}}{2}.\sin \frac{h}{2}\)

b) Với \({x_0}\) bất kì, ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}}.\mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2} = \cos {x_0}\end{array}\)

Vậy hàm số y = sin x  có đạo hàm là hàm số \(y' = \cos x\)


LT 3

Tính đạo hàm của hàm số \(y = \sin \left( {\frac{\pi }{3} - 3x} \right).\)

Phương pháp giải:

Sử dụng công thức \(\left( {\sin u} \right)' = u'.\cos u\)

Lời giải chi tiết:

\(y' = {\left( {\frac{\pi }{3} - 3x} \right)^,}\cos \left( {\frac{\pi }{3} - 3x} \right) =  - 3\cos \left( {\frac{\pi }{3} - 3x} \right)\)


HĐ 6

Bằng cách viết \(y = \cos x = \sin \left( {\frac{\pi }{2} - x} \right),\) tính đạo hàm của hàm số \(y = \cos x.\)

Phương pháp giải:

Sử dụng công thức \(\left( {\sin u} \right)' = u'.\cos u\)

Lời giải chi tiết:

\(y' = \left( {\cos x} \right)' = {\left( {\frac{\pi }{2} - x} \right)^,}\cos \left( {\frac{\pi }{2} - x} \right) =  - \cos \left( {\frac{\pi }{2} - x} \right) =  - \sin x\)


LT 4

Tính đạo hàm của hàm số \(y = 2\cos \left( {\frac{\pi }{4} - 2x} \right).\)

Phương pháp giải:

Sử dụng công thức \(\left( {\cos u} \right)' =  - u'.\sin u\)

Lời giải chi tiết:

\(y' =  - 2{\left( {\frac{\pi }{4} - 2x} \right)^,}\sin \left( {\frac{\pi }{4} - 2x} \right) = 4\sin \left( {\frac{\pi }{4} - 2x} \right)\)   


HĐ 7

a) Bằng cách viết \(y = \tan x = \frac{{\sin x}}{{\cos x}}\,\,\,\left( {x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \tan x.\)

b) Sử dụng đẳng thức \(\cot x = \tan \left( {\frac{\pi }{2} - x} \right)\) với \(x \ne k\pi \left( {k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \cot x.\)

Phương pháp giải:

- Sử dụng công thức \(\left( {\sin x} \right)' = \cos x,\left( {\cos x} \right)' =  - \sin x\)

- Sử dụng quy tắc \({\left( {\frac{u}{v}} \right)^,} = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

a) \(y' = \left( {\tan x} \right)' = {\left( {\frac{{\sin x}}{{\cos x}}} \right)^,} = \frac{{\left( {\sin x} \right)'.\cos x - \sin x.\left( {\cos x} \right)'}}{{{{\cos }^2}x}} = \frac{{{{\cos }^2}x + {{\sin }^2}x}}{{{{\cos }^2}x}} = \frac{1}{{{{\cos }^2}x}}\)

b) \(\left( {\cot x} \right)' = {\left[ {\tan \left( {\frac{\pi }{2} - x} \right)} \right]^,} = \frac{{ - 1}}{{{{\cos }^2}\left( {\frac{\pi }{2} - x} \right)}} =  - \frac{1}{{{{\sin }^2}x}}\) (dựa vào ý a)


LT 5

Tính đạo hàm của hàm số \(y = 2{\tan ^2}x + 3\cot \left( {\frac{\pi }{3} - 2x} \right).\)

Phương pháp giải:

Sử dụng công thức \(\begin{array}{l}\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}};\\\left( {\cot u} \right)' =  - \frac{{u'}}{{{{\sin }^2}u}}\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = 2\left( {{{\tan }^2}x} \right)' + 3\left[ {\cot \left( {\frac{\pi }{3} - 2x} \right)} \right]' = 2.2\tan x.\left( {\tan x} \right)' + 3.\frac{{ - \left( {\frac{\pi }{3} - 2x} \right)'}}{{{{\sin }^2}\left( {\frac{\pi }{3} - 2x} \right)}}\\ = 4\tan x.\frac{1}{{{{\cos }^2}x}} + \frac{6}{{{{\sin }^2}\left( {\frac{\pi }{3} - 2x} \right)}}\end{array}\)


VD 1

Một vật chuyển động có phương trình \(s\left( t \right) = 4\cos \left( {2\pi t - \frac{\pi }{8}} \right)\left( m \right),\) với t là thời gian tính bằng giây. Tính vận tốc của vật khi t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Phương pháp giải:

- Ý nghĩa vật lí: \(v = s'\)

- Công thức \(\left( {\cos u} \right)' =  - u'.\sin u\)

Lời giải chi tiết:

Ta có

 \(v\left( t \right) = s'\left( t \right) = 4\left[ {\cos \left( {2\pi t - \frac{\pi }{8}} \right)} \right]' =  - 4\left( {2\pi t - \frac{\pi }{8}} \right)'.\sin \left( {2\pi t - \frac{\pi }{8}} \right) =  - 8\pi \sin \left( {2\pi t - \frac{\pi }{8}} \right)\)

Vậy vận tốc của vật khi t = 5 giây là

\(v\left( 5 \right) =  - 8\pi \sin \left( {10\pi  - \frac{\pi }{8}} \right) \approx 9,6\)(m/s)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"