Bài 10 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:40:01

Đề bài

Phương trình tiếp tuyến của đồ thị hàm số \(y =  - 2{x^3} + 6{x^2} - 5\) tại điểm \(M(3; - 5)\) thuộc đồ thị là

A. \(y = 18x + 49\).                                    

B. \(y = 18x - 49\)

C. \(y =  - 18x - 49\).                                  

D. \(y =  - 18x + 49\).

Phương pháp giải - Xem chi tiết

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)

Lời giải chi tiết

Ta có \(y' =  - 6{x^2} + 12x \Rightarrow y'\left( 3 \right) =  - 18\)

Phương trình tiếp tuyến tại điểm \(M(3; - 5)\) thuộc đồ thị là:

\(y + 5 =  - 18\left( {x - 3} \right)\) hay \(y =  - 18x + 49\)

Đáp án D

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"