Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AC' = \sqrt 3 \). Khoảng cách giữa hai đường thẳng \(AB'\) và \(BC'\) bằng
A. \(\frac{1}{3}\).
B. \(\frac{{\sqrt 3 }}{3}\).
C. \(\frac{{\sqrt 3 }}{2}\).
D. \(\frac{1}{2}\)
Phương pháp giải - Xem chi tiết
Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa đường thẳng này đến mặt phẳng song song chứa đường thẳng kia
Lời giải chi tiết
Gọi AC giao BD tại O
Ta có \(AC \bot BD,BD \bot AA' \Rightarrow BD \bot \left( {ACC'A'} \right);BD \subset \left( {BDC'} \right) \Rightarrow \left( {ACC'A'} \right) \bot \left( {BDC'} \right)\)
Mà \(\left( {ACC'A'} \right) \cap \left( {BDC'} \right) = OC'\)
Trong (ACCA’) kẻ \(AE \bot OC'\)
Do đó \(AE \bot \left( {BDC'} \right)\)
Ta có AB’ // DC’ nên \(d\left( {AB',BC'} \right) = d\left( {AB',\left( {BDC'} \right)} \right) = d\left( {A,\left( {BDC'} \right)} \right) = AE\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {2A{B^2}} = AB\sqrt 2 \)
Xét tam giác ACC’ vuông tại C có
\(\begin{array}{l}A{C^2} + C{{C'}^2} = A{{C'}^2}\\ \Leftrightarrow {\left( {AB\sqrt 2 } \right)^2} + A{B^2} = 3\\ \Leftrightarrow 3A{B^2} = 3\\ \Leftrightarrow AB = 1\\ \Leftrightarrow AC = \sqrt 2 \end{array}\)
Xét tam giác OCC’ vuông tại C có \(C'O = \sqrt {C{{C'}^2} + O{C^2}} = \sqrt {{1^2} + {{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}} = \frac{{\sqrt 6 }}{2}\)
Dễ dàng chứng minh
\( \Rightarrow \frac{{AE}}{{CC'}} = \frac{{AO}}{{C'O}} \Rightarrow AE = \frac{{AO.CC'}}{{C'O}} = \frac{{\frac{{\sqrt 2 }}{2}.1}}{{\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\)
Đáp án B