Bài 27 trang 108 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:40:08

Đề bài

Giải các phương trình và bất phương trình sau:

a) \({3^{\frac{1}{x}}} = 4\)

b) \({2^{{x^2} - 3x}} = 4\);

c) \({\log _4}(x + 1) + {\log _4}(x - 3) = 3\);

d) \({\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}}\)

e) \({(2 - \sqrt 3 )^x} \le {(2 + \sqrt 3 )^{x + 2}}\)

f) \(\log \left( {3{x^2} + 1} \right) > \log (4x)\).

Phương pháp giải - Xem chi tiết

Tìm điều kiện của các phương trình sau đó giải

Lời giải chi tiết

a) \({3^{\frac{1}{x}}} = 4\) (ĐK: \(x \ne 0\))

\( \Leftrightarrow \frac{1}{x} = {\log _3}4 \Leftrightarrow x = {\log _4}3\left( {TM} \right)\)

Vậy phương trình có tập nghiệm \(x = {\log _4}3\)

b) \({2^{{x^2} - 3x}} = 4\)

\(\begin{array}{l} \Leftrightarrow {2^{{x^2} - 3x}} = {2^2}\\ \Leftrightarrow {x^2} - 3x = 2\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3 + \sqrt {17} }}{2}\\x = \frac{{3 - \sqrt {17} }}{2}\end{array} \right.\end{array}\)

Vậy phương trình có tập nghiệm \(S = \left\{ {\frac{{3 - \sqrt {17} }}{2};\frac{{3 + \sqrt {17} }}{2}} \right\}\)

c) \({\log _4}(x + 1) + {\log _4}(x - 3) = 3\) (ĐK: x > 3)

\(\begin{array}{l} \Leftrightarrow {\log _4}\left[ {\left( {x + 1} \right)\left( {x - 3} \right)} \right] = 3\\ \Leftrightarrow \left( {x + 1} \right)\left( {x - 3} \right) = {4^3}\\ \Leftrightarrow {x^2} - 2x - 3 = 4\\ \Leftrightarrow \left[ \begin{array}{l}x = 1 + 2\sqrt 2 \\x = 1 - 2\sqrt 2 \end{array} \right.\end{array}\)

Vậy phương trình có tập nghiệm \(S = \left\{ {1 + 2\sqrt 2 ;1 - 2\sqrt 2 } \right\}\)

d) \({\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge {\left( {\frac{1}{5}} \right)^3} \Leftrightarrow {x^2} - 2x \le 3 \Leftrightarrow  - 1 \le x \le 3\)

Vậy phương trình có tập nghiệm \(S = \left[ { - 1;3} \right]\)

e) \({(2 - \sqrt 3 )^x} \le {(2 + \sqrt 3 )^{x + 2}} \Leftrightarrow {\left( {2 + \sqrt 3 } \right)^{ - x}} \le {(2 + \sqrt 3 )^{x + 2}} \Leftrightarrow  - x \le x + 2 \Leftrightarrow x \ge  - 1\)

Vậy bất phương trình có tập nghiệm \(S = \left[ { - 1; + \infty } \right)\)

f) \(\log \left( {3{x^2} + 1} \right) > \log (4x) \Leftrightarrow 3{x^2} + 1 > 4x \Leftrightarrow \left[ \begin{array}{l}x < \frac{1}{3}\\x > 1\end{array} \right.\)

Vậy bất phương trình có tập nghiệm \(S = \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"