Bài 31 trang 109 SGK Toán 11 tập 2 - Kết nối tri thức

2024-09-14 12:40:09

Đề bài

Cho tứ diện OABC có \(OA = OB = OC = a,\widehat {AOB} = \widehat {AOC} = {60^0}\) và \(\widehat {BOC} = {90^0}\).

a) Chứng minh rằng \((OBC) \bot (ABC)\).

b) Tính theo a khoảng cách từ \(O\) đến mặt phẳng \((ABC)\) và thể tích khối tứ diện OABC.

Phương pháp giải - Xem chi tiết

- Hai mặt phẳng được gọi là vuông góc nếu trong mặt phẳng này có 1 đường vuông góc với mặt phẳng kia.

- Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a.

- Thể tích khối tứ diện \(V = \frac{1}{3}h.S\)

Lời giải chi tiết

a) Gọi M là trung điểm của BC

Mà tam giác OCB cân tại O (do OB = OC)

Do đó \(OM \bot BC\)

Ta có tam giác OAC đều, tam giác OAB đều (do \(OA = OB = OC = a,\widehat {AOB} = \widehat {AOC} = {60^0}\))

Do đó AC = AB = a.

Xét tam giác BOC vuông tại O (\(\widehat {BOC} = {90^0}\)) có

\(\begin{array}{l}BC = \sqrt {O{B^2} + O{C^2}}  = a\sqrt 2 \\OM = \frac{1}{2}BC = \frac{{a\sqrt 2 }}{2}\end{array}\)

Xét tam giác ABC có

\(\begin{array}{l}A{C^2} + A{B^2} = 2{a^2},B{C^2} = {\left( {a\sqrt 2 } \right)^2} = 2{a^2}\\ \Rightarrow A{C^2} + A{B^2} = B{C^2}\end{array}\)

Do đó tam giác ABC vuông tại A \( \Rightarrow AM = \frac{1}{2}BC = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác OMA có

\(\begin{array}{l}O{M^2} + A{M^2} = 2.{\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = {a^2},O{A^2} = {a^2}\\ \Rightarrow O{M^2} + A{M^2} = O{A^2}\end{array}\)

Do đó tam giác OMA vuông tại M \( \Rightarrow OM \bot AM\)

Mà \(OM \bot BC\)

\( \Rightarrow OM \bot \left( {ABC} \right);OM \subset \left( {OBC} \right) \Rightarrow \left( {OBC} \right) \bot \left( {ABC} \right)\)

b) Vì \(OM \bot \left( {ABC} \right)\) nên \(d\left( {O,\left( {ABC} \right)} \right) = OM = \frac{{a\sqrt 2 }}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"