Hoạt động 3
Vẽ đường tròn tâm O bán kính R bất kì. Dùng một đoạn dây mềm đo bán kính và đánh dấu được một cung AB có độ dài đúng bằng R (Hình 9). Đo và cho biết \(\widehat {AOB}\) có số đo bằng bao nhiêu độ.
Phương pháp giải:
Vẽ đường tròn và xác định góc như phía trên đã học
Lời giải chi tiết:
\( \Rightarrow \widehat {AOB} = 60^\circ \)
Thực hành 2
Hoàn thành bảng chuyển đổi đơn vị đo của các góc sau đây:
Số đo theo độ | 0° | ? | 45° | 60° | ? | 120° | ? | 150° | 180° |
Số đo theo rad | ? | \(\frac{\pi }{6}(rad)\) | ? | ? | \(\frac{\pi }{2}(rad)\) | ? | \(\frac{{3\pi }}{4}(rad)\) | ? | \(\pi (rad)\) |
Phương pháp giải:
Sử dụng công thức \({\alpha ^ \circ } = \frac{{\pi \alpha }}{{180}}\,\)rad ; \(\alpha \,\,rad = {\left( {\frac{{180\alpha }}{\pi }} \right)^0}\)
Lời giải chi tiết:
Số đo theo độ | 0° | 30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° |
Số đo theo rad | 0 | \(\frac{\pi }{6}(rad)\) | \(\frac{\pi }{4}\left( {rad} \right)\) | \(\frac{\pi }{3}\left( {rad} \right)\) | \(\frac{\pi }{2}(rad)\) | \[\frac{{2\pi }}{3}(rad)\] | \(\frac{{3\pi }}{4}(rad)\) | \(\frac{{5\pi }}{6}(rad)\) | \(\pi (rad)\) |