Bài 6 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo

2024-09-14 12:40:32

Đề bài

Rút gọn các biểu thức sau:

a)    \(\frac{1}{{\tan \alpha  + 1}} + \frac{1}{{\cot \alpha  + 1}}\)

b)    \(\cos \left( {\frac{\pi }{2} - \alpha } \right) - \sin \left( {\pi  + \alpha } \right)\)

c)    \(\sin \left( {\alpha  - \frac{\pi }{2}} \right) + \cos \left( { - \alpha  + 6\pi } \right) - \tan \left( {\alpha  + \pi } \right)\cot \left( {3\pi  - \alpha } \right)\)

Phương pháp giải - Xem chi tiết

Kết hợp giữa công thức cơ bản của lượng giác và hệ thức lượng giác để rút gọn

Lời giải chi tiết

a)   

\(\begin{array}{l}\frac{1}{{\tan \alpha  + 1}} + \frac{1}{{\cot \alpha  + 1}} = \frac{{\cot \alpha  + 1 + \tan \alpha  + 1}}{{\left( {\tan \alpha  + 1} \right)\left( {\cot \alpha  + 1} \right)}}\\ = \frac{{\tan \alpha  + \cot \alpha  + 2}}{{\tan \alpha .\cot \alpha  + \tan \alpha  + \cot \alpha  + 1}} = \frac{{\tan \alpha  + \cot \alpha  + 2}}{{\tan \alpha  + \cot \alpha  + 2}} = 1\end{array}\)

b)    \(\cos \left( {\frac{\pi }{2} - \alpha } \right) - \sin \left( {\pi  + \alpha } \right) = \sin \alpha  + \sin \alpha  = 2\sin \alpha \)

c)    \(\begin{array}{l}\sin \left( {\alpha  - \frac{\pi }{2}} \right) + \cos \left( { - \alpha  + 6\pi } \right) - \tan \left( {\alpha  + \pi } \right)\cot \left( {3\pi  - \alpha } \right)\\ =  - \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha  \right) - \tan \alpha .\cot \left( {\pi  - \alpha } \right)\\ =  - \cos \alpha  + \cos \alpha  + \tan \alpha .\cot \alpha \\ = 1\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"