Bài 2 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo

2024-09-14 12:40:33

Đề bài

Cho \(\sin \alpha  = \frac{{12}}{{13}}\) và \(\cos \alpha  =  - \frac{5}{{13}}\). Tính \(\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi  + \alpha } \right)\)

Phương pháp giải - Xem chi tiết

Dựa vào công thức lượng giác đặc biệt để tính

\(\cos \left( { \pi + \alpha } \right) = - \cos \left( \alpha  \right)\)

 \(\sin \left( {\frac{\pi }{2} - \alpha } \right) =  \cos \left( \alpha  \right)\)

\(\begin{array}{l}\sin (\alpha  + k2\pi ) = \sin \alpha ;\,\\\cos (\alpha  + k2\pi ) = \cos \alpha \end{array}\)

Lời giải chi tiết

Ta có:

 \(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi  + \alpha } \right) =  \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2}  + \alpha } \right) - \cos \left( {12\pi  + \pi + \alpha } \right) =  \sin \left( {-8\pi  + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha  \right) = \cos \left( \alpha  \right) + \cos \left( \alpha  \right) = 2\cos \left( \alpha  \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"