Giải mục 1 trang 13, 14, 15 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:40:36

Hoạt động 1

Trong Hình 1, M và N là điểm biểu diễn của các góc lượng giác \(\frac{{2\pi }}{3}\) và \(\frac{\pi }{4}\) trên

đường tròn lượng giác. Xác định tọa độ của M và N trong hệ trục tọa độ Oxy .

Phương pháp giải:

Dựa vào kiến thức đã học để xác định

Lời giải chi tiết:

Gọi B, C lần lượt là hình chiếu của M lên Ox, Oy

D,E lần lượt là hình chiếu của N lên Ox, Oy

Ta có OM = ON = 1

\(\widehat {MOC} = \frac{{2\pi }}{3} - \frac{\pi }{2} = \frac{\pi }{6} \Rightarrow \left\{ \begin{array}{l}\sin \widehat {MOC} = \frac{1}{2} = \frac{{MC}}{{OM}} \Rightarrow MC = \frac{1}{2}\\\cos \widehat {MOC} = \frac{{\sqrt 3 }}{2} = \frac{{MB}}{{OM}} \Rightarrow MB = \frac{{\sqrt 3 }}{2}\end{array} \right.\)

Do điểm M có hoành độ nằm bên trái trục Ox nên tọa độ của điểm M \(\left( {\frac{-1}{2};\frac{{\sqrt 3 }}{2}} \right)\)

\(\widehat {NOD} =  - \frac{\pi }{4} \Rightarrow \left\{ \begin{array}{l}\sin \widehat {NOD} =  - \frac{{\sqrt 2 }}{2} = \frac{{ND}}{{ON}} \Rightarrow ND =  - \frac{{\sqrt 2 }}{2}\\\cos \widehat {NOD} = \frac{{\sqrt 2 }}{2} = \frac{{NE}}{{ON}} \Rightarrow NE = \frac{{\sqrt 2 }}{2}\end{array} \right.\)

Tọa độ của điểm N \(\left( {  \frac{{\sqrt 2 }}{2};\frac{-{\sqrt 2 }}{2}} \right)\)


Thực hành

Tính \(\sin \left( { - \frac{{2\pi }}{3}} \right)\) và \(\tan 495^\circ \)

Phương pháp giải:

Dựa vào kiến thức đã học ở phần trên để tính

Lời giải chi tiết:

\(\begin{array}{l}\sin \left( { - \frac{{2\pi }}{3}} \right) =  - \frac{{\sqrt 3 }}{2}\\\tan 495^\circ  =  - 1\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"