Bài 4 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:40:41

Đề bài

Rút gọn các biểu thức sau:

a, \(\sqrt 2 \sin \left( {\alpha  + \frac{\pi }{4}} \right) - cos\alpha \),

b, \({\left( {cos\alpha  + \sin \alpha } \right)^2} - \sin 2\alpha \)

Phương pháp giải - Xem chi tiết

Áp dụng công thức lượng giác

\(\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b\)

\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

\(\sin 2a = 2\sin a\cos a\)

Lời giải chi tiết

a, Ta có:

\(\begin{array}{l}\sqrt 2 \sin \left( {\alpha  + \frac{\pi }{4}} \right) - cos\alpha  = \sqrt 2 .\left( {\sin \alpha \cos \frac{\pi }{4} + \cos \alpha \sin \frac{\pi }{4}} \right) - cos\alpha \\ = \sqrt 2 .\left( {\sin \alpha .\frac{{\sqrt 2 }}{2} + \cos \alpha .\frac{{\sqrt 2 }}{2}} \right) - cos\alpha \\ =  \sqrt 2 .{\sin \alpha .\frac{{\sqrt 2 }}{2} + \sqrt 2 .\cos \alpha .\frac{{\sqrt 2 }}{2}} - cos\alpha \\ =\sin \alpha  + \cos \alpha  - cos\alpha \\ = \sin \alpha \end{array}\)

b, Ta  có:

\(\begin{array}{l}{\left( {cos\alpha  + \sin \alpha } \right)^2} - \sin 2\alpha \\ = co{s^2}\alpha  + {\sin ^2}\alpha  + 2cos\alpha \sin \alpha  - 2\sin \alpha cos\alpha \\ = {\sin ^2}\alpha + co{s^2}\alpha = 1\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"