Bài 1 trang 23 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:40:42

Đề bài

Không dùng máy tính cầm tay, tính các giá trị lượng giác của các góc:

a, \(\frac{{5\pi }}{{12}}\)

b, \(-{\rm{ }}{555^0}\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức

\(\begin{array}{l}\sin \left( {a + b} \right) = \sin a\cos b + \cos asinb\\sin\left( {a - b} \right) = \sin a\cos b - \cos asinb\\\cos \left( {a + b} \right) = \cos a\cos b - \sin asinb\\\cos \left( {a - b} \right) = \cos a\cos b + \sin asinb\\\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\\\tan \left( {a - b} \right) = \frac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\end{array}\)

Lời giải chi tiết

a, Ta có:

\(\begin{array}{l}\cos \frac{{5\pi }}{{12}} = \cos \left( {\frac{\pi }{4} + \frac{\pi }{6}} \right) = \cos \frac{\pi }{4}\cos \frac{\pi }{6} - \sin \frac{\pi }{4}sin\frac{\pi }{6}\\ = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6  - \sqrt 2 }}{4}\end{array}\)

\(\begin{array}{l}\sin \frac{{5\pi }}{{12}} = \sin \left( {\frac{\pi }{4} + \frac{\pi }{6}} \right) = \sin \frac{\pi }{4}\cos \frac{\pi }{6} + \cos \frac{\pi }{4}sin\frac{\pi }{6}\\ = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6  + \sqrt 2 }}{4}\end{array}\)

\(\tan \frac{{5\pi }}{{12}} = \frac{{sin\frac{{5\pi }}{{12}}}}{{cos\frac{{5\pi }}{{12}}}} = 2 + \sqrt 3 \)

\(\cot \frac{{5\pi }}{{12}} = \frac{1}{{\tan \frac{{5\pi }}{{12}}}} = \frac{1}{{2 + \sqrt 3 }}\)

b, Ta có:

\(\begin{array}{l}\cos \left( { - {{555}^0}} \right) = \cos \left( {3\pi  + \frac{\pi }{{12}}} \right) =  - \cos \frac{\pi }{{12}} =  - \cos \left( {\frac{\pi }{3} - \frac{\pi }{4}} \right)\\ =  - \left( {\cos \frac{\pi }{3}\cos \frac{\pi }{4} + \sin \frac{\pi }{3}sin\frac{\pi }{4}} \right) =  - \frac{{\sqrt 6  + \sqrt 2 }}{4}\end{array}\)

\(\begin{array}{l}\sin \left( { - {{555}^0}} \right) = \sin \left( {3\pi  + \frac{\pi }{{12}}} \right) = sin\frac{\pi }{{12}} = sin\left( {\frac{\pi }{3} - \frac{\pi }{4}} \right)\\ = \sin \frac{\pi }{3}\cos \frac{\pi }{4} - \cos \frac{\pi }{3}sin\frac{\pi }{4}\\ = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} - \frac{1}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 6  - \sqrt 2 }}{4}\end{array}\)

\(\tan \left( { - {{555}^0}} \right) = \frac{{\sin \left( { - {{555}^0}} \right)}}{{\cos \left( { - {{555}^0}} \right)}} =  - 2 + \sqrt 3 \)

\(\cot \left( { - {{555}^0}} \right) = \frac{1}{{ - 2 + \sqrt 3 }} =  - 2 - \sqrt 3 \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"