Giải hoạt động khởi động trang 20 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:40:44

Đề bài

Trong kiến trúc, các vòm cổng bằng đá thường có hình nửa đường tròn để có thể chịu lực tốt. Trong hình bên, vòm cổng được ghép bởi sáu phiến đá hai bên tạo thành các cung AB, BC, CD, EF, FG, GH bằng nhau và một phiến đá chốt ở đỉnh. Nếu biết chiều rộng cổng và khoảng cách từ điểm B đến đường kính AH, làm thế nào để tính được khoảng cách từ điểm C đến AH?

Phương pháp giải - Xem chi tiết

Dựa vào hình vẽ để giải quyết bài toán

Lời giải chi tiết

Đặt chiều rộng cổng AH = d.

\( \Rightarrow OA = OB = \frac{1}{2}d\)

Xét tam giác OBB’ có:

\(\sin \widehat {BOB'} = \frac{{BB'}}{{OB}} = \frac{{27}}{{\frac{d}{2}}} = \frac{{54}}{d}\)

Vì số đo cung AB = số đo cung BC nên số đo cung AC = 2.AB\( \Rightarrow \widehat {AOC} = 2\widehat {BOB'}\)

Xét tam giác OCC’ vuông tại C’ có:

\(\begin{array}{l}\sin \widehat {COC'} = \frac{{CC'}}{{OC}}\\ \Leftrightarrow CC' = OC.\sin \widehat {COC'} = OC.\sin \left( {2\widehat {BOB'}} \right)\end{array}\)

Mà \(\sin \left( {2\widehat {BOB'}} \right) = 2.\sin \widehat {BOB'}.cos\widehat {BOB'}\)

Vậy để tính khoảng cách từ điểm C đến AH ta phải tìm được \(\sin \widehat {BOB'},cos\widehat {BOB'}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"