Bài 3 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:08

Đề bài

Xét tính tăng, giảm của dãy số \(\left( {{y_n}} \right)\) với \({y_n} = \sqrt {n + 1}  - \sqrt n \).

Phương pháp giải - Xem chi tiết

Bước 1: Tìm \({y_{n + 1}}\).

Bước 2: Xét hiệu \({y_{n + 1}} - {y_n}\) hoặc xét thương \(\frac{{{y_{n + 1}}}}{{{y_n}}}\) nếu các số hạng của dãy số \(\left( {{y_n}} \right)\) là số dương.

Bước 3: Kết luận:

– Nếu \({y_{n + 1}} - {y_n} > 0\) hoặc \(\frac{{{y_{n + 1}}}}{{{y_n}}} > 1\) thì \({y_{n + 1}} > {y_n},\forall n \in {\mathbb{N}^*}\), vậy dãy số \(\left( {{y_n}} \right)\) là dãy số tăng.

– Nếu \({y_{n + 1}} - {y_n} < 0\) hoặc \(\frac{{{y_{n + 1}}}}{{{y_n}}} < 1\) thì \({y_{n + 1}} < {y_n},\forall n \in {\mathbb{N}^*}\), vậy dãy số \(\left( {{y_n}} \right)\) là dãy số giảm.

Lời giải chi tiết

Cách 1:

Ta có: \({y_n} = \sqrt {n + 1}  - \sqrt n  = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{{\left( {n + 1} \right) - n}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{1}{{\sqrt {n + 1}  + \sqrt n }}\)

\( \Rightarrow {y_{n + 1}} = \frac{1}{{\sqrt {\left( {n + 1} \right) + 1}  - \sqrt {n + 1} }} = \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\)

Xét hiệu:

\(\begin{array}{l}{y_{n + 1}} - {y_n} = \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }} - \frac{1}{{\sqrt {n + 1}  + \sqrt n }} = \frac{{\left( {\sqrt {n + 1}  + \sqrt n } \right) - \left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}\\ = \frac{{\sqrt {n + 1}  + \sqrt n  - \sqrt {n + 2}  - \sqrt {n + 1} }}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}} = \frac{{\sqrt n  - \sqrt {n + 2} }}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}\end{array}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\begin{array}{l}\left. \begin{array}{l}0 < n < n + 2 \Leftrightarrow \sqrt n  < \sqrt {n + 2}  \Leftrightarrow \sqrt n  - \sqrt {n + 2}  < 0\\\sqrt {n + 2}  > 0,\sqrt {n + 1}  > 0,\sqrt n  > 0 \Leftrightarrow \left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right) > 0\end{array} \right\}\\ \Rightarrow \frac{{\sqrt n  - \sqrt {n + 2} }}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}} < 0\end{array}\)

Vậy \({y_{n + 1}} - {y_n} < 0 \Leftrightarrow {y_{n + 1}} < {y_n}\). Vậy dãy số \(\left( {{y_n}} \right)\) là dãy số giảm.

Cách 2:

Ta có: \({y_n} = \sqrt {n + 1}  - \sqrt n  = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{{\left( {n + 1} \right) - n}}{{\sqrt {n + 1}  + \sqrt n }} = \frac{1}{{\sqrt {n + 1}  + \sqrt n }}\)

\( \Rightarrow {y_{n + 1}} = \frac{1}{{\sqrt {\left( {n + 1} \right) + 1}  - \sqrt {n + 1} }} = \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\begin{array}{l}0 < n < n + 2 \Leftrightarrow \sqrt n  < \sqrt {n + 2}  \Leftrightarrow \sqrt {n + 1}  + \sqrt n  < \sqrt {n + 2}  + \sqrt {n + 1} \\ \Leftrightarrow \frac{1}{{\sqrt {n + 1}  + \sqrt n }} > \frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }} \Leftrightarrow {y_n} > {y_{n + 1}}\end{array}\)

Vậy dãy số \(\left( {{y_n}} \right)\) là dãy số giảm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"