Bài 1 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:09

Đề bài

Tìm \({u_2},{u_3}\) và dự đoán công thức số hạng tổng quát \({u_n}\) của dãy số:

\(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \frac{{{u_n}}}{{1 + {u_n}}}\left( {n \ge 1} \right)\end{array} \right.\)

Phương pháp giải - Xem chi tiết

‒ Lần lượt thay giá trị \(n = 1;2;3\) vào biểu thức \({u_{n + 1}}\).

‒ Tìm điểm chung của các số hạng của dãy số \(\left( {{u_n}} \right)\).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)

Suy ra, \({u_n} = \frac{1}{n}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"