Bài 13 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:21

Đề bài

Giả sử một quần thể động vật ở thời điểm ban đầu có 110000 cá thể, quần thể này có tỉ lệ sinh là 12%/năm, xuất cư là 2%/năm, tử vong là 8%/năm. Dự đoán số cá thể của quần thể đó sau hai năm.

Phương pháp giải - Xem chi tiết

‒ Biến đổi, đưa \({u_{n + 1}} = {u_n}.q\), khi đó dãy số là cấp số nhân có công bội \(q\).

‒ Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).

Lời giải chi tiết

Mỗi năm số cá thể của quần thể này tăng: \(12\%  - 2\%  - 8\%  = 2\% \).

Giả sử số cá thể của quần thể đó là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 110000\).

Ta có:

\(\begin{array}{l}{u_1} = 110000\\{u_2} = {u_1} + {u_1}.\frac{2}{{100}} = {u_1}.1,02\\{u_3} = {u_2} + {u_2}.\frac{2}{{100}} = {u_2}.1,02\\{u_4} = {u_3} + {u_3}.\frac{2}{{100}} = {u_3}.1,02\\ \vdots \\{u_n} = {u_{n - 1}} + {u_{n - 1}}.\frac{2}{{100}} = {u_{n - 1}}.1,02\end{array}\)

Vậy số cá thể của quần thể đó tạo thành cấp số nhân với số hạng đầu \({u_1} = 110000\) và công bội \(q = 1,02\).

Số cá thể của quần thể đó sau hai năm là: \({u_3} = {u_1}.{q^2} = 110000.1,{02^2} = 114444\) (cá thể).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"