Bài 11 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:22

Đề bài

Tìm số hạng đầu \({u_1}\) và công sai \(d\) của cấp số cộng \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right.\);       

b) \(\left\{ \begin{array}{l}{u_7} + {u_{15}} = 60\\u_4^2 + u_{12}^2 = 1170\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

‒ Công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

‒ Công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Sau đó đưa về giải hệ phương trình.

Lời giải chi tiết

a)

\(\begin{array}{l}\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10\left( {{u_1} + 4{\rm{d}}} \right) = 0\\\frac{{4\left( {2{u_1} + 3{\rm{d}}} \right)}}{2} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10{u_1} + 40{\rm{d}} = 0\\2\left( {2{u_1} + 3{\rm{d}}} \right) = 14\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}15{u_1} + 40{\rm{d}} = 0\\2{u_1} + 3{\rm{d}} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d =  - 3\end{array} \right.\end{array}\)

Vậy cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 8\) và công sai \(d =  - 3\).

b)

\(\begin{array}{l}\left\{ \begin{array}{l}{u_7} + {u_{15}} = 60\\u_4^2 + u_{12}^2 = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{u_1} + 6{\rm{d}}} \right) + \left( {{u_1} + 14{\rm{d}}} \right) = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6{\rm{d}} + {u_1} + 14{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 20{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 10{\rm{d}} = 30\left( 1 \right)\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\left( 2 \right)\end{array} \right.\end{array}\)

\(\left( 1 \right) \Leftrightarrow {u_1} = 30 - 10{\rm{d}}\) thế vào (2) ta được:

\(\begin{array}{l}{\left( {30 - 10{\rm{d}} + 3{\rm{d}}} \right)^2} + {\left( {30 - 10{\rm{d}} + 11{\rm{d}}} \right)^2} = 1170 \Leftrightarrow {\left( {30 - 7{\rm{d}}} \right)^2} + {\left( {30 + {\rm{d}}} \right)^2} = 1170\\ \Leftrightarrow 900 - 420{\rm{d}} + 49{{\rm{d}}^2} + 900 + 60{\rm{d}} + {d^2} = 1170 \Leftrightarrow 50{{\rm{d}}^2} - 360{\rm{d}} + 630 = 0\\ \Leftrightarrow 5{{\rm{d}}^2} - 36{\rm{d}} + 63 = 0 \Leftrightarrow \left[ \begin{array}{l}d = 3\\d = \frac{{21}}{5}\end{array} \right.\end{array}\)

Với \(d = 3 \Leftrightarrow {u_1} = 30 - 10.3 = 0\).

Với \(d = \frac{{21}}{5} \Leftrightarrow {u_1} = 30 - 10.\frac{{21}}{5} =  - 12\).

Vậy có hai cấp số cộng \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số cộng có số hạng đầu \({u_1} = 0\) và công sai \(d = 3\).

‒ Cấp số cộng có số hạng đầu \({u_1} =  - 12\) và công sai \(d = \frac{{21}}{5}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"