Bài 7 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:22

Đề bài

Có bao nhiêu số thực \(x\) để \(2x - 1;x;2x + 1\) theo thứ tự lập thành cấp số nhân?

A. 1.                       

B. 2.                       

C. 3.                        

D. 4.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của cấp số nhân: Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân thì \(u_n^2 = {u_{n - 1}}.{u_{n + 1}}\) với \(n \ge 2\).

Lời giải chi tiết

\(2x - 1;x;2x + 1\) theo thứ tự lập thành cấp số nhân khi:

\({x^2} = \left( {2x - 1} \right)\left( {2x + 1} \right) \Leftrightarrow {x^2} = 4{{\rm{x}}^2} - 1 \Leftrightarrow 3{{\rm{x}}^2} - 1 = 0 \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{3}\)

Vậy có 2 số thực \(x\) thoả mãn \(2x - 1;x;2x + 1\) theo thứ tự lập thành cấp số nhân.

Chọn B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"