Bài 3 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo

2024-09-14 12:41:32

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x + 3}}{{2x}}\);      

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3x + 1}}\);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\).

Phương pháp giải - Xem chi tiết

Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.

Bước 2: Tính các giới hạn của tử và mẫu rồi áp dụng các quy tắc tính giới hạn để tính giới hạn.

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x + 3}}{{2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {4 + \frac{3}{x}} \right)}}{{2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{4 + \frac{3}{x}}}{2} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } 4 + \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{x}}}{{\mathop {\lim }\limits_{x \to  + \infty } 2}} = \frac{{4 + 0}}{2} = 2\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x\left( {3 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3 + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\frac{{\mathop {\lim }\limits_{x \to  - \infty } 2}}{{\mathop {\lim }\limits_{x \to  - \infty } 3 + \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}}} = 0.\frac{2}{{3 + 0}} = 0\).

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2}\left( {1 + \frac{1}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}}\)

                                      \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + \frac{1}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x}}} = \frac{{\sqrt {1 + 0} }}{{1 + 0}} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"